
Generalization Behaviour

of Alkemic Decision Trees

K.S. Ng

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

The Australian National University
kee@cslab.anu.edu.au

Abstract. This paper is concerned with generalization issues for a deci-
sion tree learner for structured data called Alkemy. Motivated by error
bounds established in statistical learning theory, we study the VC di-
mensions of some predicate classes defined on sets and multisets – two
data-modelling constructs used intensively in the knowledge represen-
tation formalism of Alkemy – and from that obtain insights into the
(worst-case) generalization behaviour of the learner. The VC dimension
results and the techniques used to derive them may be of wider indepen-
dent interest.

1 Introduction

This paper is concerned with gaining some understanding of the generalization
behaviour of Alkemy, a logical decision-tree learner for structured data intro-
duced under the higher-order logic learning framework of [17]. A brief (early)
description of the learner appears in [6].

To get started on our goal, we turn to the rich body of literature on gen-
eralization issues. Inspection of error bounds established in statistical learning
theory for general decision trees with arbitrary input domains and arbitrary node
functions reveals that an important parameter governing the generalization be-
haviour of Alkemic decision trees is the VC dimension of node functions, and
this is what we study in this paper. Specifically, we concentrate on some natural
predicate classes defined on sets and multisets – two data-modelling constructs
used intensively in the knowledge representation framework of [17] – and give
bounds on their VC dimensions. The results turn out to have wider application
beyond sets and multisets. Some indications of how they can be used to analyse
common predicate classes defined on more complex data types like lists, trees,
graphs, etc are given.

To the author’s best knowledge, this is the first time that the VC dimensions
of different predicate classes defined on sets and multisets have been analyzed
directly. The only other relevant work I’m aware of is in [8], where the VC
dimension of a class of predicates defined on sets is analyzed indirectly through
a mapping to Blum’s infinite attribute space model [5].

The paper is organized as follows. Section 2 provides background informa-
tion on Alkemy. Error bounds suitable for use with it are stated in Section 3.
Sections 4 and 5 present the new VC dimension results. A discussion of the main
findings is given in Section 6. We conclude in Section 7.

2 Alkemy

We assume some familiarity with a functional programming language like Haskell
[26] in the following.

Figure 1 gives a high-level view of the Alkemy classification learning system.
It accepts as inputs (1) a set of training examples and (2) a hypothesis space,
and produces as output a logical decision tree. A variant of the standard TDIDT
algorithm is used to construct the output tree.

ALKEMY

 p ~p

q ~q

r ~r

 1

0 1

 0

Training Data
{(xi, yi)}0≤i≤N

xi ∈ Bα, yi ∈ {0, 1}

A predicate rewrite system �
defining a search space S� .

A Logical Decision Tree

p, q, r ∈ S�

Fig. 1. A schematic diagram of Alkemy

Individuals (also known as instances) in the training set are represented using
basic terms in the set Bα for some type α chosen appropriately according to the
application. The formal basis for basic terms is provided in [17]; syntactically,
they read like Haskell data constructs. A rich catalogue of data types is provided
for data modelling via basic terms, and these include integers, floating-point
numbers, characters, strings, booleans, data constructors, tuples, sets, multisets,
lists, trees, graphs and composite types that can be built up from these.

Node functions are specified using predicate rewrite systems in Alkemy. A
detailed description of the mechanism is beyond the scope of this paper. Here
we only provide sufficient detail in order to understand its use in Section 5.

Predicates are constructed incrementally by composing more basic functions
called transformations. Composition is handled by the (reverse) composition
function

◦ : (a→ b)→ (b→ c)→ (a→ c)

defined by ((f ◦ g) x) = (g (f x)).

Definition 1. A transformation f is a function having a signature of the form

f : (%1 → Ω)→ · · · → (%k → Ω)→ µ→ σ,

where any type variables in %1, . . . , %k and σ appear in µ, and k ≥ 0. (Here Ω is
the type of the booleans.) The type µ is called the source of the transformation,
while the type σ is called the target of the transformation. The number k is called
the rank of the transformation.

The two constants 1 and 0 have type Ω. We now look at some examples of
transformations.

Example 2. The transformation ∧n : (a → Ω) → · · · → (a → Ω) → a → Ω
defined by

∧n p1 . . . pn = λx.((p1 x) ∧ · · · ∧ (pn x)),

provides a conjunction of n predicates.

Example 3. Each projection proji : a1 × · · · × an → ai defined by

proji (t1, . . . , tn) = ti,

for i = 1, . . . , n, is a transformation of rank 0.

Example 4. There are two fundamental transformations top : a→ Ω and bottom :
a → Ω defined by (top x) = 1 and (bottom x) = 0, for each x. The transforma-
tion top is the weakest predicate on the type a and bottom, the strongest.

Example 5. Let µ be a type and suppose A,B,C : µ are constants of type µ.
Then, corresponding to A, one can define a transformation (= A) : µ→ Ω by

((= A) x) = x = A,

with analogous definitions for (= B) and (= C). Similarly, one can define the
transformations (6= A), (6= B) and (6= C).

Example 6. Consider a type such as Nat (the type of the natural numbers) which
has various order relations defined on it. Then, for any natural number N , one
can define the transformation (< N) : Nat → Ω by

((< N) m) = m < N.

In a similar way, one can define the transformations (> N), (≥ N), and (≤ N).

Example 7. Consider the transformation domCard : (µ → Ω) → {µ} → Nat
defined by

domCard b t = card {x | (b x) ∧ x ∈ t},

where card computes the cardinality of a set. Given a predicate b on type µ
and a transformation on Nat such as (> 42), one can construct a predicate
(domCard b) ◦ (> 42) on sets of type {µ} which selects the subset of elements
that satisfy the predicate b and then checks that the cardinality of this subset is
greater than 42.

One can similarly define domMcard for multisets.

Example 8. Consider the transformation setExists1 : (a → Ω) → {a} → Ω
defined by

setExists1 b t = ∃x.((b x) ∧ (x ∈ t)).

The predicate (setExists1 b) checks whether a set has an element that satisfies b.

Transformations are used to define a particular class of predicates, called
standard predicates.

Definition 9. A standard predicate is a term of the form

(f1 p1,1 . . . p1,k1
) ◦ · · · ◦ (fn pn,1 . . . pn,kn

),

where fi is a transformation of rank ki (i = 1, . . . , n), the target of fn is Ω, pi,ji

is a standard predicate (i = 1, . . . , n, ji = 1, . . . , ki), ki ≥ 0 (i = 1, . . . , n) and
n ≥ 1.

Example 10. If p, q, and r are standard predicates (having appropriate type)
and ¬ : Ω → Ω is negation, then (∧3 p q r) ◦¬ is a standard predicate.

Now we can very informally define a predicate rewrite system. A predicate
rewrite is an expression of the form

p � q,

where p and q are standard predicates. The predicate p is called the head and q
is the body of the rewrite. A predicate rewrite system is a finite set of predicate
rewrites. One should think of a predicate rewrite system as a kind of grammar
for generating a particular class of predicates. Roughly speaking, this works
as follows. Starting from the weakest predicate top, all predicate rewrites that
have top (of the appropriate type) in the head are selected to make up child
predicates that consist of the bodies of these predicate rewrites. Then, for each
child predicate and each redex in that predicate, all child predicates are generated
by replacing each redex by the body of the predicate rewrite whose head is
identical to the redex. This generation of predicates continues to produce the
predicate class. The space of predicates defined this way using a predicate rewrite
system � is denoted S�.

Example 11. Consider the predicate rewrite system � given for the Musk prob-
lem in §5.1. The following is a path in the predicate space defined by �.

top

setExists1 (∧3 top top top)

setExists1 (∧3 (proj 1 ◦ (= −6)) top top)

setExists1 (∧3 (proj 1 ◦ (= −6)) (proj 2 ◦ (= 5)) top)

setExists1 (∧3 (proj 1 ◦ (= −6)) (proj 2 ◦ (= 5)) (proj 120 ◦ (= 0)))

3 Error Bounds

We now state a few error bounds for general decision trees. The purpose is to
determine what are important parameters that one should look at in analysing
the generalization behaviour of Alkemic decision trees.

We start with a reminder of some basic concepts. In what follows, log de-
notes logarithm to base 2, ln denotes the natural logarithm, and d·e and b·c
denote, respectively, the ceiling and floor functions. The set of natural numbers
{1, 2, 3, . . .} is denoted N.

Let X be an arbitrary set and F a class of predicates over X . The growth
function of F , ΠF : N→ N, is defined by ΠF(n) = max{|F|x| : x ∈ X

n}, where

F|x = {(f(x1), . . . , f(xn)) : f ∈ F}.

Given x ∈ Xn, if |F|x| = 2n, then we say x is shattered by F . (Equivalently, we
say a subset Y of X is shattered by F if each subset Z of Y can be picked out
by a predicate in F , i.e., there exists f ∈ F such that ∀z ∈ Z. f(z) = 1 and
∀z ∈ Y \Z. f(z) = 0.) The Vapnik-Chervonenkis (VC) dimension of F is defined
by

VCD(F) = max{n : ΠF(n) = 2n}

or ∞ if no such maximum exists.
The following is a standard result we will need. More facts about VC dimen-

sion can be found in standard texts like [1].

Proposition 12. Let F be a finite predicate class. Then VCD(F) ≤ blog |F|c.

Proof. We need at least 2d predicates to shatter a set of d elements. ut

Error bounds for decision trees obtained from classical VC theory suggest
that the amount of training data needed for learning should grow at least linearly
with the size of the tree and the VC dimension of the node functions. See, for
example, [1], [12] and [13]. More recent results give data-dependent bounds that
are qualitatively different from those earlier results. For example, in [14], the
authors show how decision trees with node functions in U can be represented as
thresholded convex combinations of functions in U , and from that establish error
bounds for decision trees using margin-based error bounds for two-layer neural
networks (see [1] and [23]). We state the main theorem here. For more details,
the reader is referred to [14] and [19].

Theorem 13 ([14]). For a fixed δ > 0, there is a constant c that satisfies the
following. Let D be a distribution on X × {0, 1}. Consider the class of decision
trees of depth up to k, with node functions in U . With probability at least 1 − δ
over the training set S of size m, every decision tree T satisfies

P(x,y)∼D[T (x) 6= y] ≤ P(x,y)∼S[T (x) 6= y]+ c

(

Neff VCD(U) log2m log k

m

)1/3

.

Here Neff is a data-dependent quantity that measures the effective number of
leave nodes in T , a number that can be significantly smaller than the actual
number of leave nodes in T . See, for the exact definition, [14].

The classical theorems are suitable for use with small trees; Theorem 13
works better for large trees.

4 Tools for Calculating VC Dimensions

As shown in the last section, the VC dimension of node functions is an impor-
tant parameter in the generalization behaviour of Alkemic decision trees. To
understand the nature of learning with Alkemy, we thus need to develop meth-
ods to calculate the VC dimensions of (more-or-less arbitrary) predicate classes
definable using predicate rewrite systems. The problem seems difficult at first
sight; in fact, it was listed as an open research question in [17, Exercise 6.6].
But recent progress has shown that solutions to some important aspects of the
general problem are actually rather straightforward. These results are reported
here.

We will first outline the development of some useful tools for analysing pred-
icate classes defined on sets and multisets in this section. Armed with these, we
will then proceed in Section 5 to calculate the VC dimensions of three illustrative
predicate rewrite systems selected from [17]. We remark that the tools developed
here have applications beyond Alkemy, for example in the analysis of systems
that learn from set-valued objects like [8].

In this section, for the most part, we will abstract away from predicate rewrite
systems and just work on predicate classes defined on ‘collections’ of natural
numbers. As we shall see, this is a useful simplification since there is a simple
mapping between natural numbers and arbitrary finite sets that we can exploit.

4.1 Sets

We will start with the following basic observation.

Proposition 14. Let F∃ be the class of predicates F∃ = {fi,j : i, j ∈ N, j ≥ i}
where each fi,j : 2N → {0, 1} is defined by

fi,j(t) =

{

1 if ∃x ∈ t. i ≤ x ≤ j

0 otherwise.

Then VCD(F∃) =∞.

Proof. It suffices to show that the subset F ′
∃ = {fi,i : i ∈ N} of F∃ has infinite

VC dimension. For each n ∈ N, we can construct a set {X1, X2, . . . , Xn} that
is shattered by F ′

∃ as follows. Enumerate all the subsets of N = {1, 2, . . . , n},
assigning them numbers from 1 to 2n. For instance, when n = 3 we get

1 2 3 4 5 6 7 8 .

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

Now define Xi to be the set of all numbers assigned to a subset of N having i
as a member. Continuing with our example for n = 3, we obtain the set

{X1 = {2, 5, 6, 8}, X2 = {3, 5, 7, 8}, X3 = {4, 6, 7, 8}}.

It is clear that {X1, X2, . . . , Xn} constructed this way is shattered by F ′
∃. ut

We next give a useful generalization of Proposition 14. First, a definition.

Definition 15. Let X be a set and F a class of predicates over X. We say a
set S ⊆ X is disintegrated by F if for every x ∈ S, there exists an f ∈ F such
that f(x) = 1 and f(y) = 0 for all y ∈ S \ {x}.

Lemma 16. Let X be a set and suppose F is a class of predicates over X. Let
G = {gf : f ∈ F} be the class of predicates where each gf : 2X → {0, 1} is
defined by

gf (t) =

{

1 if ∃x ∈ t. f(x) = 1

0 otherwise.

If there exists a finite S ⊆ X such that |S| > 2 and S is disintegrated by F , then
VCD(G) ≥ blog |S|c.

Proof. Proceeding as in Proposition 14, we can assign a different element of S to
each subset of N = {1, 2, . . . , blog |S|c}. Defining Xi to be the set of all elements
assigned to a subset of N in which i occurs gives us a subset of 2X that is
shattered by G. ut

As a simple application of Lemma 16, we give this next result for sets of
tuples of constants.

Theorem 17. Let N be a finite subset of N satisfying |N | > 2. Suppose m ≥
n > 0 and let Gm,n be the class of predicates

Gm,n = {g{(il,jl)}1≤l≤k
: k ∈ {1, . . . , n}, il ∈ {1, . . . ,m}, jl ∈ N}

where each g{(il,jl)}1≤l≤k
: 2Nm

→ {0, 1} is defined by

g{(il,jl)}1≤l≤k
(t) =

{

1 if ∃(x1, . . . , xm) ∈ t.(xi1 = j1) ∧ · · · ∧ (xik
= jk)

0 otherwise.

Then

VCD(Gm,n) ≥

{

bm log |N |c if n = m;

blog(
∑n

k=1

(

m
k

)

(|N | − 1)k)c otherwise.

Proof. Let

Fm,n = {f{(il,jl)}1≤l≤k
: k ∈ {1, . . . , n}, il ∈ {1, . . . ,m}, jl ∈ N, i1 < · · · < ik}

where each f{(il,jl)}1≤l≤k
: Nm → {0, 1} is defined by

f{(il,jl)}1≤l≤k
(x1, . . . , xm) =

{

1 if (xi1 = j1) ∧ · · · ∧ (xik
= jk)

0 otherwise.

We use Lemma 16 to get the lower bounds here. When n = m, we can use for
S the whole set Nm, which is clearly disintegrated by Fm,m. When n < m, we
construct S as follows. Pick an x ∈ N at random and consider the following
subset of Fm,n:

Fm,n,x = {f{il,jl}1≤l≤k
: k ∈ {1, . . . , n},

il ∈ {1, . . . ,m}, jl ∈ N \ {x}, i1 < · · · < ik}.

For each predicate f{(il,jl)}1≤l≤k
∈ Fm,n,x add to S the tuple that has value jl

at the il-th component, and x everywhere else. (For instance, when m = 5, k =
2, N = {1, 2, 3} and x = 3, given f{(1,2),(3,1)}, we add (3, 3, 1, 3, 2) to S.) It is
not hard to see that each element in S can be picked out by the predicate that
generated it. Further,

|S| = |Fm,n,x| =
n

∑

k=1

(

m

k

)

(|N | − 1)k.

The condition |N | > 2 ensures that |S| > 2 in both cases. ut

It is perhaps of (independent) interest to note that the dual F∀ (defined
below) of F∃ defined in Proposition 14 has finite VC dimension.

Proposition 18. Let F∀ be the class of predicates F∀ = {fi,j : i, j ∈ N, j ≥ i}
where each fi,j : 2N → {0, 1} is defined by

fi,j(t) =

{

1 if ∀x ∈ t. i ≤ x ≤ j;

0 otherwise.

Then VCD(F∀) = 2.

Proof. It is easy to show that VCD(F∀) > 2. Assume there exists a set S =
{X,Y, Z} that is shattered by F∀. Clearly, none of the elements in S can be the
empty set, which evaluates to 1 for each f ∈ F∀. Further, each element in S must
be finite. (Shattering is impossible otherwise.) Denote by max(A) and min(A)
the biggest and smallest numbers in a (finite) set A of numbers and define the
range of A by range(A) = {min(A), . . . ,max(A)}. We have

∀A,B ∈ S, A 6= B ⇒ range(A) * range(B)

since if range(A) ⊆ range(B), there is no way to make B true without also
making A true. Without loss of generality, assume min(X) < min(Y) < min(Z).
This implies max(X) < max(Y) < max(Z). Now, there is no fi,j ∈ F∀ such
that fi,j(X) = 1, fi,j(Z) = 1, and fi,j(Y) = 0 since any (i, j)-interval that
covers both min(X) and max(Z) must also cover every number in the range
{min(Y), . . . ,max(Y)} ⊇ Y . ut

4.2 Multisets

We next look at multisets. The difference between a set and a multiset is that an
element can occur multiple times in a multiset. Some of the results given for sets
clearly carry over to multisets with little change. The multiplicity of elements
allowed in multisets can sometimes be exploited, as done in our next result. First
some notation.

Let A be a multiset of elements from some set X . In the following, we denote
by #(A, x) the multiplicity of x ∈ X in A. Further, we denote by N0 the set
{0} ∪ N.

Definition 19. Let A and B be multisets of elements from some set X. We
define the pairwise maximum between A and B, denoted AtB, as follows: AtB
is the multiset that contains, for all x ∈ X, max{#(A, x),#(B, x)} occurrences
of x. For example, {1, 1, 2, 2, 2} t {1, 2, 2, 2, 2, 3, 3, 3}= {1, 1, 2, 2, 2, 2, 3, 3, 3}.

Theorem 20. Suppose X and Y are non-empty finite subsets of N. Let F be
the class of predicates F = {fi,j : i ∈ X, j ∈ Y } where each fi,j : N0

N → {0, 1}
is defined by

fi,j(t) =

{

1 if #(t, i) > j;

0 otherwise.

Let d ∈ N. If |Y | > d+1 and |X | >
(

d
i

)

for all i ∈ {1, . . . , d}, then VCD(F) > d.

Proof. The proof is in two stages. In the first stage, we show that given a function
ψ from the powerset of D = {1, . . . , d} to N0

N satisfying a certain property, we
can construct a set Z = {Z1, . . . , Zd} that is shattered by F . In the second stage,
we show that ψ exists and give a simple algorithm for constructing it.

Stage 1 We denote by (x, y) the multiset that contains y occurrences of x and
nothing else. Assume ψ satisfies the following property: For all S ⊆ D, we have

1. ψ(S) = (x, y) for some x, y ∈ N, and

2. for all A ⊆ D not equal to S, if ψ(A) = (x, z) for some z ∈ N and |A| ≥ |S|,
then S ⊂ A and y > z.

Given such a function ψ, define Zi =
⊔

{ψ(S) : S ⊆ D, i ∈ S} for each i ∈ D.
(Example 23 below gives an example of a function ψ defined on the subsets of
D = {1, 2, 3, 4} that satisfy the property stated above. References there to the

Label algorithm should be ignored for now. Each pair A (B,C) in the example
should be interpreted as ψ(A) = (B,C). For example, ψ(∅) = (1, 5). Note also
the way each Zi is defined using ψ.) We now argue that the set Z = {Z1, . . . , Zd}
so-constructed is shattered by F . Specifically, we show that for all S ⊆ D,
fx,y(Zi) = 1 if i ∈ S and fx,y(Zi) = 0 otherwise, given that ψ(S) = (x, y).

Consider an arbitrary S ⊆ D with ψ(S) = (x, y). If i ∈ S, by construction,
Zi contains at least y occurrences of x and fx,y(Zi) = 1. Consider now the case
when i /∈ S. If #(Zi, x) = 0, then fx,y(Zi) = 0 as desired. If #(Zi, x) > 0, then
there exists A ⊆ D such that i ∈ A and ψ(A) = (x, z) for some z ∈ N. We
can assume without loss of generality that A is the set with the largest z. If
|A| ≥ |S|, then by the property of ψ, we have y > z and S ⊂ A, which implies
fx,y(Zi) = 0. If |A| < |S|, then by the property of ψ, we have z > y and A ⊂ S.
(Simply substitute the set A for the variable S and the set S for the variable A
in the statement of the property of ψ.) This case can’t arise since A ⊂ S and
i ∈ A together imply i ∈ S, contradicting i /∈ S.

Stage 2 It suffices to show that one such ψ exists. We will give a more general
result that shows that not only does ψ exists, we can actually find many instances
of it efficiently using well-studied algorithms in graph theory.

Given X and Y both non-empty finite subsets of N, we first use the Label
algorithm given below to label the subsets of D. For each S ⊆ D, we then
define ψ(S) to be the label assigned to S. To get some intuition, we first give a
high-level description of the labelling algorithm. Conceptually, we first lay out
in a sequence the subsets of D in groups, starting from the empty set (group
0), followed by the 1-subsets (group 1), the 2-subsets (group 2), . . . , and finally
finishing at D (group |D|). (A subset with k elements in it is called a k-subset
here.) The algorithm starts by labelling the largest group and then iteratively
label the next two largest unlabelled groups until every subset of D has a label.

We now give the algorithm. The variables l, u and m are integers. In the
algorithm, we denote by Y [i] and X [i] the i-th largest elements in Y and X .
The condition |X | ≥

(

d
i

)

for all i comes about because of Step 2. The condition
|Y | ≥ d + 1 comes from the fact that there are d + 1 groups of subsets of D.
Example 23 below gives a concrete example of the labelling. It is instructive to
work through the example at this stage.

Alg. Label

1. l ← 1; u← 1; m← min{i : ∀j.
(

d
j

)

6
(

d
i

)

};

2. Label the m-subsets of D with (X [i], Y [dd/2 + 1e]) in increasing order of i.

3. If m− l < 0, goto Step 6;

4. C ← the (m− l + 1)-subsets of D;

5. For each (m− l)-subset S of D
(a) Pick an L ∈ C with label (x, Y [m]) such that S ⊂ L and label S with

(x, Y [m+ 1]);
(b) C ← C \ L;

6. If m+ u > d, terminate;

7. C ← the (m+ u− 1)-subsets of D;

8. For each (m+ u)-subset S of D

(a) Pick an L ∈ C with label (x, Y [m]) such that L ⊂ S and label S with
(x, Y [m− 1]);

(b) C ← C \ L;

9. l ← l + 1; u← u+ 1; Goto Step 3;

By design, the function ψ constructed from a labelling obtained by Label,
assuming it terminates, satisfies the condition stated earlier. We now show that
the Label algorithm always terminate successfully. For that, we need to show
that Steps 5(a) and 8(a) can always be performed for each S. We will show this
for Step 5(a); the argument for Step 8(a) is similar. What we are trying to do is
in fact to find a matching in a bipartite graph. The vertices of the graph consists
of the (m − l) and (m − l + 1)-subsets of D, with the (m − l)-subsets forming
the first partition, and the (m− l+1)-subsets the second. There is an edge from
an (m− l)-subset A to an (m− l + 1)-subset B iff A ⊂ B. By the choice of m,
we have

no. of (m− l)-subsets =

(

d

m− l

)

6

(

d

m− l + 1

)

= no. of (m− l + 1)-subsets.

Thus we seek a matching of cardinality
(

d
m−l

)

.

To show that such a matching exists and can be found efficiently, we introduce
a concept from graph theory.

Definition 21. A vertex cover of a graph G = (V,E) is a set U ⊆ V
such that every edge of G is incident with a vertex in U .

We make use of the following known result. For a proof, see, for example, [9].

Theorem 22 (König 1931). The maximum cardinality of a matching
in a bipartite graph G is equal to the minimum cardinality of a vertex
cover of G.

The set of (m − l)-subsets with cardinality
(

d
m−l

)

is clearly a vertex cover. A
straightforward indirect argument shows that there is no smaller vertex cover.
The existence of our desired matching then follows from Theorem 22. There
are efficient network flow algorithms for finding (all) such matchings; see, for
instance, [21, Chap. 10].

Finally, the labelling algorithm will always terminate at Step 6 by the choice
of m in Step 1. ut

Example 23. Suppose X = {1, . . . , 6} and Y = {1, . . . , 5}. Let F be as defined
in Theorem 20. To construct a set Z = {Z1, Z2, Z3, Z4} that is shattered by F ,
we first label the subsets of D = {1, 2, 3, 4} according to the Label algorithm.

One acceptable labelling is the following.

∅ (1, 5)

{1} (1, 4), {2} (4, 4), {3} (2, 4), {4} (3, 4)

{1, 2} (1, 3), {1, 3} (2, 3), {1, 4} (3, 3), {2, 3} (4, 3), {2, 4} (5, 3), {3, 4} (6, 3)

{1, 2, 3} (1, 2), {1, 2, 4} (5, 2), {1, 3, 4} (2, 2), {2, 3, 4} (6, 2)

{1, 2, 3, 4} (1, 1)

Based on the function ψ obtained from the labelling, we construct

Z = { Z1 = {1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5},

Z2 = {4, 4, 4, 4, 1, 1, 1, 5, 5, 5, 6, 6},

Z3 = {2, 2, 2, 2, 4, 4, 4, 6, 6, 6, 1, 1},

Z4 = {3, 3, 3, 3, 5, 5, 5, 6, 6, 6, 2, 2, 1} }.

It can be easily verified that Z is shattered by F . J

Observation 24. It is possible to weaken the condition on |Y | in Theorem 20
using a more scrupulous grouping of the subsets, especially for large values of d.
We note here a simple way to weaken that to |Y | > d− 1 by treating the empty
set as part of the 1-subsets, and the whole set D as part of the (d − 1)-subsets
during labelling. Labelling is possible because the empty set, being a subset of
every other set, is connected to all the 2-subsets; and the set D, being a superset
of every other set, is connected to all the (d− 2)-subsets.

5 Some Illustrations

Building on results presented in the previous section, we now analyse three
instructive examples of predicate rewrite systems taken from [17, Chap. 6]. For
each illustration, we briefly introduce the problem and give details on (1) the way
individuals are represented; and (2) the predicate rewrite system used. Readers
can consult [17] for more information.

5.1 Musk

This first illustration is the Musk problem described in [10]. Briefly, the problem
is to determine whether or not a molecule has a musk odour. Molecules generally
have many different conformations and, presumably, only one conformation is
responsible for the activity. Each conformation is a tuple of 166 floating-point
numbers, where 162 of these represent the distance in angstroms from some origin
in the conformation out along a radial line to the surface of the conformation
and the other four numbers represent the position of a specific oxygen atom.
For convenience, the floating-point numbers are discretized into 13 intervals,
resulting in the following.

Representation of Individuals

−6,−5, . . . , 5, 6 : Distance

Conformation = Distance × · · · ×Distance

Molecule = {Conformation}

Here the product type Distance × · · · ×Distance contains 166 components. The
function musk to be learned has signature musk : Molecule → Ω.

Predicate Rewrite System

top � setExists1 (∧3 top top top)

top � proj i ◦ (= j) where i ∈ {1, 2, . . . , 166}, j ∈ {−6,−5, . . . , 6}

Proposition 25. VCD(S�) = 30.

Proof. By Proposition 12, VCD(S�) ≤ blog |S�|c = blog 1, 679, 615, 641c= 30.
We have the lower bound

VCD(S�) ≥ blog(

3
∑

k=1

(

166

k

)

(12)k)c = blog 1, 295, 658, 552c= 30

by Theorem 17. ut

5.2 Climate

Consider next the problem of deciding whether a climate in some country is
pleasant or not. The climate is modelled by a multiset. Each item in a multiset
is a term characterizing the main features of the weather during a day and the
multiplicity of the item is the number of times during a year a day with those
particular weather features occurs.

Representation of Individuals

Sunny,Overcast ,Rain : Outlook

Hot ,Mild ,Cool : Temp

High,Normal ,Low : Humidity

Strong,Medium ,Weak : Wind

Weather = Outlook × Temp ×Humidity ×Wind

A climate is modelled as a multiset Climate = Weather → Nat and the function
pleasant to be learned has signature pleasant : Climate → Ω.

Predicate Rewrite System

top � (domMcard top) ◦ (> 0);

top � ∧4 (projOutlook ◦ top) (projTemp ◦ top)

(projHumidity ◦ top) (projWind ◦ top);

top � (= Sunny); top � (= Overcast); top � (= Rain);

top � (= Hot); top � (= Mild); top � (= Cool);

top � (= High); top � (= Low); top � (= Normal);

top � (= Strong); top � (= Medium); top � (= Weak);

(> i) � (> i+ 50) where i ∈ {0, 50, . . . , 300}.

Proposition 26. 8 ≤ VCD(S�) ≤ 11.

Proof. By Proposition 12, VCD(S�) ≤ blog |S�|c = blog 2057c = 11. We use
Theorem 20 to establish the lower bound. All the tuples of type Weather can be
numbered and form the set X , with |X | = 81. Each predicate in S� of the form

(domMcard (∧4 (projOutlook ◦ (= A))

(projTemp ◦ (= B)) (projHumidity ◦ (= C)) (projWind ◦ (= D)))) ◦ (> j)

is equivalent to some fi,j+1 as defined in Theorem 20, where i is the labelling
number of (A,B,C,D). There are 81 ways to instantiate the variables A,B,C
and D. The variable j can take on values in the set

Y = {1, 51, 101, 151, 201, 251, 301, 351}.

The largest d satisfying |Y | ≥ d− 1 and |X | ≥
(

d
i

)

for all i is d = 8. ut

5.3 Beyond Sets and Multisets

Results like Theorem 17 and Theorem 20 are actually more useful than they
appear. A natural thing to do when learning from structured data is to check for
existence of substructures common to individuals of the same class. For exam-
ple, given a graph, it is common to pull out the set of all subgraphs of a certain
size and check whether there exists one satisfying a certain property. Similarly
for lists, trees and other complex data types. This means that transformations
involving sets and multisets actually appear very often in predicate rewrite sys-
tems defined over a wide range of structured data, and these can be analysed
using results presented in this paper. We remark that, in fact, all but one il-
lustrations described in [17, Chap. 6], which cover many different data types in
common use, can be analysed this way.

To illustrate the kind of reasoning involved, we give one final example, again
taken from [17], involving lists. We consider the East-West challenge proposed
by Michalski. Given trains and the directions they are traveling in, the task is to
learn a rule that can differentiate between those heading east and those heading
west.

The most natural type to model a train is a list. We first introduce the types
Direction , Shape, Length, Kind , Roof , and Object .

East ,West : Direction

Rectangular ,DoubleRectangular ,UShaped ,BucketShaped ,

Hexagonal ,Ellipsoidal : Shape

Long ,Short : Length

Closed ,Open : Kind

Flat , Jagged ,Peaked ,Curved ,None : Roof

Circle ,Hexagon,Square,Rectangle,LongRectangle,Triangle,

InvertedTriangle ,Diamond ,Null : Object .

We also introduce the following type synonyms for convenience.

NumWheels = Nat

NumObjects = Nat

Load = Object ×NumObjects

Car = Shape × Length ×NumWheels ×Kind × Roof × Load

Train = List Car .

The function direction to be learned has signature direction : Train → Direction .
Before giving the predicate rewrite system, we first introduce a few transfor-

mations for lists. The transformation listToSet : Train → {Car} converts a list
of carriages into a set of carriages. The transformation (sublists N) : Train →
{Train} takes a list of carriages and returns the set of all sublists of size N . The
transformation (!!N) : Train → Car takes a train and returns the N -th carriage
in the train. The predicate rewrite system is as follows.

top � listToSet ◦ (setExists1 (∧2 top top));

top � (sublists 2) ◦ (setExists1 (∧2 ((!!0) ◦ top) ((!!1) ◦ top)));

top � projShape ◦ top; top � projLength ◦ top; top � projNumWheels ◦ top;

top � projKind ◦ top; top � projRoof ◦ top; top � projLoad ◦ top

top � projObject ◦ top; top � projNumObjects ◦ top;

top � (= A) where A a constant of type Shape;

top � (= B) where B a constant of type Length;

top � (= C) where C a constant of type Kind ;

top � (= D) where D a constant of type Roof ;

top � (= E) where E a constant of type Object ;

top � (= 1); top � (= 2); top � (= 3).

Proposition 27. 7 ≤ VCD(S�) ≤ 11.

Proof. Given |S�| = 2073, we have VCD(S�) ≤ blog |S�|c = 11 by Proposition
12. The lower bound can be established by analysing the predicates generated
by the first rewrite. The reasoning proceeds in a similar fashion as in Theorem
17, but taking into account the fact that the components of Car have different
ranges. An element from each component is reserved as a default value, in the
same way an x ∈ N is used in Theorem 17. From that, we get a set X of Car
objects that can be used to construct a shatterable set D of sets of Car objects,
where |D| = blog |X |c by Lemma 16. Clearly, one can recover a Train object
from each element in D. A straightforward counting exercise yields |X | = 230,
giving us the lower bound blog |X |c = 7. ut

6 Discussion

In the three examples presented in the previous section, an upper bound on the
VC dimension is established by counting the size of the predicate class. A lower
bound is then given via an explicit construction of a set of individuals that is
shattered by the predicate class, making use of the rich structures available.
Interestingly, the upper and lower bounds are never too far apart, and this holds
true for all the other illustrations in [17] we analysed. Now one would expect
that it is possible to do a lot better than a näıve counting of the predicate class;
apparently not. What are we to make of these results?

It was shown in [25] (see also [1, Chap. 5]) that for a predicate class with
high VC dimension, there exist distributions that will force the learning algo-
rithm to require a large number of examples to obtain good generalization. This,
together with the results presented in this paper, implies that, in general, the
true errors of hypotheses in the rich predicate classes used by Alkemy cannot
be easily estimated from empirical data, and that, in the worst case, the number
of training examples needed grows rather quickly with the size and complexity
of the hypothesis language used. The problem is that if we do not make any
assumption about the underlying distribution, then we must be prepared to ac-
cept the possibility that everything can conspire against the learner – the more
structures we introduce into the representation of individuals and the hypothesis
language, the more structures there are to be exploited for producing bad cases.

7 Conclusion

We have looked at some generalization issues in relation to Alkemy in this
paper. In particular, we investigated the VC dimensions of some predicate classes
defined on sets and multisets and studied their applications in the context of
Alkemy. The results provide valuable information on the nature of learning
with sets and multisets, thus filling a gap in our understanding of the process
of learning from structured data. On the practical side, the tools developed in
this paper can be used to calculate the complexity of different predicate classes.
In real applications, such calculations can be used to guide the selection and
crafting of hypothesis languages.

Future Work We have shown in this paper that some fairly natural predicate
classes defined on sets and multisets have high VC dimension. This implies that
these classes are hard to learn in the distribution-free setting. However, learning
with predicate classes that have high VC dimensions is possible if the underlying
distribution is benign, and this information can be obtained from the training
data. For instance, [24] shows that the VC dimension of a predicate class on
the training sample can be used as a measure of how helpful the distribution
is in identifying the target concept, and gives error bounds in terms of that.
More recently, [4] gives error bounds in terms of the Rademacher and Gaussian
complexities of predicate classes, and these can be estimated easily from the
training data. PAC-Bayes and PAC-MDL bounds, which are also data-dependent
results, can also help us obtain tighter bounds. Some relevant work along this
line of research include [18] and [22]. Investigation into such data-dependent
analysis is our future work.

Related Work A body of work in ILP has provided both upper and lower
bounds on the number of examples required for learnability, mostly in the PAC
setting. Upper bounds are usually obtained by analyzing concrete algorithms
for learning restricted first-order classes; see, for example, [20], [11], [7] and [16].
Issues of computation and estimation, in the sense expounded in [1, §1.1], are
usually tightly integrated in this kind of analyses, and this failure to separate
concerns is slightly unsatisfactory.

Lower bounds, however, are usually obtained, independently of computation
issues, using purely information-theoretic concepts like Vapnik-Chervonenkis di-
mensions. Examples of such work include [3], [15] and [2], and this paper is
related to these. The fact that the same general conclusion was obtained from
the analyses of two very different knowledge representation formalisms tells us
something about the sample complexity of learning with rich expressive lan-
guages in general.

Acknowledgments

I’m grateful to John W. Lloyd and Evan Greensmith for valuable discussions.

References

1. Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical

Foundations. Cambridge University Press, 1999.
2. Marta Arias and Roni Khardon. Complexity parameters of first order classes. In

Proceedings of the 13th International Conference on Inductive Logic Programming,
pages 22–37, 2003.

3. Hiroki Arimura. Learning acyclic first-order horn sentences from entailment.
In Proceedings of the International Conference on Algorithmic Learning Theory.
Springer-Verlag, 1997.

4. Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities:
risk bounds and structural results. Journal of Machine Learning Research, 3:463–
482, 2002.

5. Avrim Blum. Learning boolean functions in an infinite attribute space. Machine

Learning, 9(4):373–386, 1992.
6. Antony F. Bowers, Christophe Giraud-Carrier, and John W. Lloyd. Classification

of individuals with complex structure. In Proceedings of the 17th International

Conference on Machine Learning, pages 81–88. Morgan Kaufmann, 2000.
7. William W. Cohen. PAC-learning recursive logic programs: Efficient algorithms.

Journal of Artificial Intelligence Research, 2:501–539, 1995.
8. William W. Cohen. Learning trees and rules with set-valued features. In Pro-

ceedings of the 13th National Conference on Artificial Intelligence, pages 709–716,
Menlo Park, CA, 1996. AAAI Press.

9. Reinhard Diestel. Graph Theory. Springer-Verlag, 2nd edition, 2000.
10. Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solving

the multiple instance problem with axis-parallel rectangles. Artificial Intelligence,
89:31–71, 1997.

11. Sašo Džeroski, Stephen Muggleton, and Stuart Russell. PAC-learnability of deter-
minate logic programs. In Proceedings of the Workshop on Computational Learning

Theory, 1992.
12. Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random

examples. Information and Computation, 82:231–246, 1989.
13. Usama Fayyad and Keki Irani. What should be minimized in a decision tree? In

Proc. the 8th National Conference on Artificial Intelligence, pages 749–754, 1990.
14. Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, and Llew Mason. Generalization

in decision trees and DNF: Does size matter? In Advances in Neural Information

Processing Systems 10, pages 259–265, 1998.
15. Roni Khardon. Learning function free horn expressions. Machine Learning, 37:241–

275, 1999.
16. Jörg-Uwe Kietz and Sašo Džeroski. Inductive logic programming and learnability.

SIGART Bulletin, 5(1):22–32, 1994.
17. John W. Lloyd. Logic for Learning: Learning Comprehensible Theories from Struc-

tured Data. Cognitive Technologies. Springer, 2003.
18. Yishay Mansour and David McAllester. Generalization bounds for decision trees.

In Proceedings of the 13th Annual Conference on Computational Learning Theory,
pages 69–80. Morgan Kaufmann, San Francisco, 2000.

19. Llew Mason. Margins and Combined Classifiers. PhD thesis, Research School of
Information Sciences and Engineering, The Australian National University, 1999.

20. Stephen Muggleton and Cao Feng. Efficient induction of logic programs. In S. Mug-
gleton, editor, Inductive Logic Programming, pages 281–298. Academic Press, 1992.

21. Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:

Algorithms and Complexity. Dover Publications, 1998.
22. Ulrich Rückert and Stefan Kramer. Towards tight bounds for rule learning. In

Proceedings of the 21st International Conference on Machine Learning, 2004.
23. Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the

margin: A new explanation for the effectiveness of voting methods. The Annals of

Statistics, 26 (5):1651–1686, 1998.
24. John Shawe-Taylor, Peter L. Bartlett, Robert Williamson, and Martin Anthony.

Structural risk minimization over data-dependent hierarchies. IEEE Transactions

on Information Theory, 44(5):1926–1940, 1998.
25. Hans-Ulrich Simon. General bounds on the number of examples needed for learning

probabilistic concepts. J. of Computer and System Sciences, 52:239–254, 1996.
26. Simon Thompson. Haskell - The Craft of Functional Programming. Addison-

Wesley, 2nd edition, 1999.

